A rigidity penalty term for nonrigid registration.

نویسندگان

  • Marius Staring
  • Stefan Klein
  • Josien P W Pluim
چکیده

Medical images that are to be registered for clinical application often contain both structures that deform and ones that remain rigid. Nonrigid registration algorithms that do not model properties of different tissue types may result in deformations of rigid structures. In this article a local rigidity penalty term is proposed which is included in the registration function in order to penalize the deformation of rigid objects. This term can be used for any representation of the deformation field capable of modelling locally rigid transformations. By using a B-spline representation of the deformation field, a fast algorithm can be devised. The proposed method is compared with an unconstrained nonrigid registration algorithm. It is evaluated on clinical three-dimensional CT follow-up data of the thorax and on two-dimensional DSA image sequences. The results show that nonrigid registration using the proposed rigidity penalty term is capable of nonrigidly aligning images, while keeping user-defined structures locally rigid.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint

Voxel-based nonrigid image registration can be formulated as an optimisation problem whose goal is to minimise a cost function, consisting of a first term that characterises the similarity between both images and a second term that regularises the transformation and/or penalties improbable or impossible deformations. Within this paper, we extend previous works on nonrigid image registration by ...

متن کامل

Nonrigid Registration Using Regularization that Accommodates Local Tissue Rigidity

Regularized nonrigid medical image registration algorithms usually estimate the deformation by minimizing a cost function, consisting of a similarity measure and a penalty term that discourages “unreasonable” deformations. Conventional regularization methods enforce homogeneous smoothness properties of the deformation field; less work has been done to incorporate tissue-type-specific elasticity...

متن کامل

Atlas based liver segmentation using nonrigid registration with a B-spline transformation model

Liver segmentation is an important step for the therapeutic decision making in liver surgery. However, manual segmentation is timeconsuming and tedious and so the need for accurate and robust automatic segmentation methods for clinical data arises. In this work an atlas in combination with nonrigid registration is used to segment the liver in actual clinical CT images. First, the atlas is built...

متن کامل

3D nonrigid medical image registration using a new information theoretic measure.

This work presents a novel method for the nonrigid registration of medical images based on the Arimoto entropy, a generalization of the Shannon entropy. The proposed method employed the Jensen-Arimoto divergence measure as a similarity metric to measure the statistical dependence between medical images. Free-form deformations were adopted as the transformation model and the Parzen window estima...

متن کامل

Joint image reconstruction and nonrigid motion estimation with a simple penalty that encourages local invertibility

Motion artifacts are a significant issue in medical image reconstruction. There are many methods for incorporating motion information into image reconstruction. However, there are fewer studies that focus on deformation regularization in motioncompensated image reconstruction. The usual choice for deformation regularization has been penalty functions based on the assumption that tissues are ela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical physics

دوره 34 11  شماره 

صفحات  -

تاریخ انتشار 2007